package cn.hhb.spark.sql;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.SQLContext;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructField;import org.apache.spark.sql.types.StructType;import scala.Tuple2;import java.sql.Connection;import java.sql.DriverManager;import java.sql.Statement;import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;/** * Created by dell on 2017/7/27. */public class JDBCDataSource { public static void main(String[] args) { // 创建SparkConf SparkConf conf = new SparkConf() .setAppName("HiveDataSource").setMaster("local") .set("spark.testing.memory", "2147480000"); // 创建javasparkContext JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); // 分别将mysql中两张表的数据加载为dataframe Mapoptions = new HashMap (); options.put("url","jdbc:mysql://spark1:3306/testdb"); options.put("dbtable","student_infos"); DataFrame studentInfosDF = sqlContext.read().format("jdbc").options(options).load(); options.put("dbtable","student_scores"); DataFrame studentScoresDF = sqlContext.read().format("jdbc").options(options).load(); // 将两个dataframe转换为javapairRDD,执行join操作 JavaPairRDD > studentsRDD = studentInfosDF.javaRDD().mapToPair(new PairFunction () { @Override public Tuple2
call(Row row) throws Exception { return new Tuple2 ( row.getString(0), Integer.valueOf(String.valueOf(row.getLong(1))) ); } }).join(studentScoresDF.javaRDD().mapToPair(new PairFunction () { @Override public Tuple2
call(Row row) throws Exception { return new Tuple2 ( String.valueOf(row.get(0)), Integer.valueOf(String.valueOf(row.get(1))) ); } })); // 将javapairRDD转换为javaRDD JavaRDD
studentRowsRDD = studentsRDD.map(new Function
>, Row>() { @Override public Row call(Tuple2 > tuple) throws Exception { return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2); } }); // 过滤出分数大于80分的数据 JavaRDD filteredStudentRowsRDD = studentRowsRDD.filter(new Function
() { @Override public Boolean call(Row row) throws Exception { if (row.getInt(2) > 80){ return null; } return false; } }); // 转换为dataframe List
structFields = new ArrayList (); structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true)); structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true)); StructType structType = DataTypes.createStructType(structFields); // 使用动态构造的元数据,将rdd转换为dataframe DataFrame studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType); Row[] rows = studentsDF.collect(); for (Row row : rows){ System.out.println(row); } // 将dataFrame中的数据保存到mysql表中 studentsDF.javaRDD().foreach(new VoidFunction () { @Override public void call(Row row) throws Exception { String sql = "insert into good_student_infos values('"+row.getString(0)+"','"+Integer.valueOf(String.valueOf(row.getLong(1)))+"','"+Integer.valueOf(String.valueOf(row.getLong(1)))+"')"; Class.forName("com.mysql.jdbc.Driver"); Connection conn = null; Statement stmt = null; try { conn = DriverManager.getConnection( "jdbc:mysql://spark1:3306/testdb", "", "" ); stmt = conn.createStatement(); stmt.executeUpdate(sql); } catch (Exception e){ e.printStackTrace(); } finally { if (stmt != null){ stmt.close(); } if (conn != null){ conn.close(); } } } }); sc.close(); }}